Project Brief

survey of self-draining road surfaces in Korea

プロジェクト紹介

韓国における排水性舗装調査

加藤人士

KATOH Hitoshi

株式会社片平エンジニアリング/道路環境第2部/課長

1――はじめに

韓国の道路は、物資の輸送や身 近な移動手段として、最も整備が進 んだ交通インフラである。韓国内を 東西および南北の方向に高速道路 が配置され、これらを連絡するよう に一般国道が整備されている。ソウ ル等の大都市周辺では、片側3~5 車線の道路が多く、高い輸送能力が 確保されている。一方、地方部では 道路が唯一の交通手段であり、その 役割は大きい。

韓国においても、道路網の整備だ けではなく、安全性や環境保全等に 対する認識が高まっており、道路舗

装も排水性舗装の導入が模索され ている。このような中、韓国の一般 国道において、排水性舗装の試験 的な施工が行われており、本格的な 導入に先立ち、現状の把握、課題の 整理を行うために、韓国建設技術研 究院 (Korea Institute of Construction Technology)から排水性舗装に関す る調査依頼を受けた。ここでは、① 排水性舗装の現状把握、②劣化要 因の分析、③維持管理指標の検討 について紹介する。

2--排水性舗装の特徴と効果

日本の高速道路では、排水性舗 装が標準的な舗装として採用されて いる。また、一般国道等の主要幹 線道路でも広く普及している。排水 性舗装は、表層部が20%程度の空 隙を有する舗装であり、降雨時に雨 水を表層内に浸透させ、基層上(不 透水層)で排水する構造である。し たがって、水はねを低減できると共 に、ハイドロプレーニング現象を抑 制でき、安全性の向上に大きく寄与 する。また、空隙が多い舗装である ため、タイヤトレッドと舗装表面の間 で発生する「タイヤポンピング音」を

■写真2-地方部の一般国道

■写真3一水はね状況の比較

■写真4-良好な舗装面

■写真5-骨材剥離が見られる舗装面(駐車場出入口)

抑制する効果があり、一般的な密粒 舗装と比較して3dB程度の減音が 見られ、沿道の生活環境保全に寄 与する。

3---韓国の排水性舗装の現状

排水性舗装の試験施工は、一般 国道(都市部を除く)で、約50箇所 実施している。この中から25箇所に ついて概略調査を行い、その内11 筒所で詳細な調査を行った。

3.1 概略調查

概略調査は目視調査を基本とし、 わだち掘れやひび割れ等の路面性 状を確認した。一般部は良好な箇 所が多いが、交差点部や駐車場の 出入口付近等、車両の停止・発進や

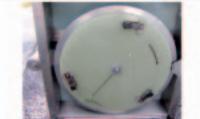
旋回時のねじれ抵抗が発生する筒 所では骨材剥離、ポットホールが見 られた。また、舗装表面に散水を行 い排水機能の確認を行ったが、約 70%の箇所で排水機能が低下して いた。

3.2 詳細調査

詳細調査では概略調査の中から 代表的な地点を選定し、試験器具 を用いて定量的な評価を実施した。 (1) すべり摩擦抵抗

路面の安全性を評価するうえで、 すべり摩擦抵抗は重要な指標であ り、Dynamic Friction Tester (DFT) を 用いてすべり摩擦抵抗を測定した。 DFTは、湿潤状態となった路面に、 ゴムパット付回転盤を任意の速度で

接触させ、すべり抵抗値を測定する 試験であり、すべての箇所で良好な 結果を得た。


(2) 現場透水量試験

現場透水量試験は、排水機能を 評価する試験として、我が国でも広 く用いられている。同試験は、試験 器に充填した水が、排水性舗装に浸 透する透水量を測定するものであ る。約60%の箇所で排水機能がな いか、極めて低い状態にあり、概略 調査の傾向と一致した。

(3)舗装コア採取

排水性舗装の内部状態を確認す るために、舗装コアを採取した。採 取した舗装コアは、室内試験におい て、骨材粒度、アスファルト量および

■写真6 - Dynamic Friction Tester

■写直7一現場诱水試験

■写真8ー舗装コア

052 | Civil Engineering Consultant

■写真9一自動遠心分離抽出機

■写真10一骨材ふるい分け試験

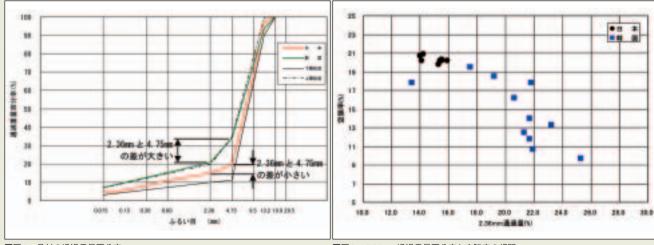
空隙率の測定を行い、配合等から低 下要因を分析する基礎資料とした。

4---機能低下要因の分析

4.1 外的要因の分析

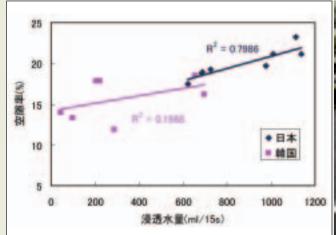
舗装の機能低下要因として、交通 荷重や気象条件等の外的要因が考 えられる。特に積雪時のタイヤチェ ーン等による磨耗は、排水性舗装の 表面劣化を促進する大きな要因であ り、我が国においても、スキー場周 辺のタイヤチェーン装着率が高い地 域で、骨材剥離が多く見られる。韓 国では、川間部を除いて年間の降 雪量は、20~30cm程度の地域が多 く、タイヤチェーン等の装着はほとん ど見られず、外的要因による機能低 下は少ないと考えられる。

4.2 室内試験の分析


詳細調査により採取した舗装コア の骨材粒度分布を確認するため、ア スファルト抽出試験および粒度試験 を実施した。アスファルト抽出試験 は、ほぐした舗装コアに溶剤を加え ながら遠心力でアスファルトを取り 除く試験である。分離した骨材の粒 度試験を行ったところ、細骨材から 粗骨材まで、連続的に分布している ことが明らかとなった。比較検証を おこなうため、我が国の標準的な粒 度分布を調査したところ、細粒分と 粗粒分(2.36mmと4.75mm)の通過 質量百分率の差が少なく、不連続 な粒度分布であることが分かる。 (図1)

さらに、細粒分(2.36mm 通過重量

百分率)と空隙率の関係について分 析を行ったところ、2.36mm 通過重 量百分率が多い(細粒分が多い)ほ ど、空隙率が少なくなる傾向があり、 排水機能の低下要因の一つと判断 した。(図2)


4.3 アスファルトの分析

我が国で排水性舗装に用いるア スファルトは、高粘度改質アスファル トが一般的であるが、韓国ではスト レートアスファルトを用いていた。高 粘度改質アスファルトは、骨材の結 合力を高めるために有効である。 交差点部等で骨材剥離が多く確認 されたが、ストレートアスファルトを 用いていることが、原因の一つと考 えられる。

■図1-骨材の通過重量百分率

■図2-236mm通過重量百分率と空隙率の相関

■図3-浸透水量と空隙率の関係

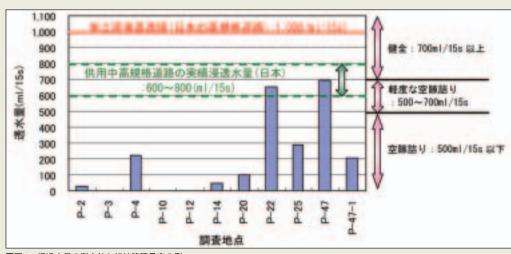
■写真11 一雨天時の排水性舗装と密粒舗装の路面状態

5 維持管理指標の検討

排水性舗装の機能低下は、①排 水機能の低下(空隙詰り)、②交差 点部等における骨材剥離の二つに 大きく分類できる。これらの劣化に ついて、維持管理指標を検討した。

5.1 排水機能の評価方法

排水機能は、舗装の空隙率と密 接な関係にある。図3は空隙率と浸 透水量の関係を分析したものであ り、我が国の事例は相関が高いが、 本調査のデータからは、一定の関係 が見られない。これは空隙率がある レベルまで低下すると、その大小に 係わらず浸透水量が低くなるからで ある。しかし、現場透水量試験は簡 易に排水機能を測定でき、一定の条 件を定めれば、空隙率も間接的に


把握できるため、維持管理指標とし て有効である。なお、本調査の実績 および過去のデータ等から、維持管 理の目安については、浸透水量(排 水機能の低下レベル)を3段階に区 分けしたものを提案した。(図4)

5.2 骨材剥離の評価方法

骨材剥離は深さや大きさを明確に 定義することが難しく、本調査では、 表層面が平滑な状態でなくなった面 積が直径10cm以上のものを骨材剥 離として取り扱った。このような定義 に基づき、舗装面全体で骨材剥離 が占める面積を骨材剥離率とし、骨 材剥離レベルを設定した。対象区 間の中で、車輪通過部の骨材剥離 が50%程度に達した場合には、早 急に補修を行うレベルと提案した。

6-おわりに

排水性舗装は安全性や環境保全 に有効な舗装であり、広く普及する ことが望まれる。しかし、その機能 を適切に評価し、維持管理していか なければ、本来の効果を発揮するこ とが難しい。我が国においても、排 水性舗装特有の機能低下状態を直 接評価する手法は、確立されていな い状況にあり、今後さらにデータを 蓄積し、評価基準と維持・修繕方法 の関連等について、研究を進める 必要があると考える。

■図4ー浸透水量の測定値と維持管理目安の例

054 | Civil Engineering Consultant Civil Engineering Consultant | 055