Project Brief	Planning the safety and efficient measures against rockfall using three-dimensiona rockfall simulation method
プロジェクト紹介	3次元落石シミュレーションを用いた 安全かつ効率的な落石対策工
	近藤光広
	KONDO Mitsuhiro
	基礎地盤コンサルタンツ株式会社/ 中部支社/設計部/課長代理

1――はじめに

岐阜県御嵩町の次月地区は、未風 化の花崗岩が山腹に多く露出してい る。当地区ではこの露岩を鬼岩と 呼び、温泉宿泊施設もある景勝地と なっている。次月地区を通る国道21 号線は、土岐市と美濃加茂・可児市 を繋ぐ重要な路線であり交通量も多 い。この国道に沿った斜面でも巨大 な未風化花崗岩が多く見られ、道路 防災上の危険性が指摘されていた。

落下する岩塊が巨大な場合、一般 的な対策工としては、石を現位置で 固定する落石予防工が選定される。 しかし予防工を実施する場合、景観 の良い巨石ほどアンカー等で大規模 に固定する必要があり、景観を著し く損ねる可能性があった。また、不 安定な巨石を現位置で固定する工 事は危険性が高く、大規模な仮設を 必要とし、対策費用が高価になると 予測された。現地の状況を写真1~ 5に示す。

本稿では、これらの問題を解決す るため3次元落石シミュレーション解 析を実施し、地形を反映した落石経 路と速度減衰を推定することで、高 エネルギー吸収柵を効率的に配置 し、予防工を大幅に減らすとともに、 景勝地としての景観も維持できた事 例を紹介する。

■ 写直2 - 斜面下の道路状況

■写真3一最大浮石の状況

■写真5 - 斜面中の浮石状況2

2——現場状況

当箇所は図1に示すように谷地形 を呈する斜面であり、大きな落石供 給源は2つの尾根に見られる大規模 な露岩であるが、斜面上部には小 規模な露岩も点在している。

斜面の勾配は道路までの平均勾 配で30°程度であり、斜面上部で約 35°の急斜面であるが、道路近傍ほ ど緩やかな斜面となり、末端付近で は約17°の緩勾配となる。

斜面は全体に崖錐が堆積してお り、斜面末端の緩勾配部には多くの 転石が見られ、中には大きく割れて いる転石もあることから、上部から の落石が末端部で停止したものと推 測される。最大の石は終点側尾根 に見られる浮石で、4.5×4.5×5.3m の巨石である。

3-3次元落石シミュレーション 解析

近年ではパソコンの能力向上に伴 い、多くの落石シミュレーション手法 が開発・提案されており、その調査 研究資料(『落石対策便覧に関する 参考資料 - 落石シミュレーション 手法の調査研究資料ー』日本道路協 会平成14年4月)が出版されている。 落石シミュレーションは、基本的に 落石形状を反映せず単純な質点と して考える質点系と、落石の形状を 反映する非質点系の手法があり、各 手法でも数種類の方法が試みられて いる。

非質点系にも個別要素法 (DEM) や不連続変形法 (DDA) 等があるが、 今回の落石シミュレーション解析は 不連続変形法 DDA (Discontinuous Deformation Analysis)を用いて行っ た。シミュレーションで使用する設 定主要パラメータについて、前述の 調査研究資料に記載される一般値 と今回の採用値を表1に示す。

■図1-対策箇所平面図

今回の解析の「摩擦角」は斜面平 均勾配から安息角相当として30°を 設定し、「粘性係数」は当地の樹木植 生が密では無いことから一般値範囲 の安全側として0.2を使用した。また 「速度エネルギー比|は2次元シミュ レーションを実施し、落石が斜面末 端付近に停止している現在の状況 を再現できる値として0.2を採用して いる。

3次元シミュレーション解析は、乱 数による試行で確率的に解を求め

■表1一設定主要パラメータ表								
設定パラメータ	一般值	採用値	摘要					
速度エネルギー比 γ	0.2~0.7	0.2 ²⁾	崖錐斜面					
摩擦角 <i>ϕ</i>	30°	30°	平均斜面勾配					
粘性係数	0.2~0.3	0.2 ³⁾	樹木植生有り					

るモンテカルロ手法を用い、200回 の試行計算を実施した。また解析に 用いる浮石・転石は、標高と谷筋か ら10エリアに区分し、各エリアで最

■表2-3次元落石シミュレーション結果

落石	落石	形状	計公司券	道路到達	道路到達	落石速度	跳躍高	***		落石径		落石	落石の
エリア	No.	$(m \times m \times m)$	武1丁凹釵	回数	確率(%)	(m/s)	(m)	浴口	横幅	高さ	奥行	速度	質量
1	1	4.5×4.5×5.3	200	45	22.5	5.6	0.62	NO.	(m)	(m)	(m)	(m/s)	m (kN)
2	8	2.5×2.0×1.8	200	9	4.5	4.5	0.46	1	4.50	4.50	5.30	5.6	1674.27
3	16	2.0×3.0×2.0	200	28	14.0	6.1	0.46	19-1左	4.00	3.50	3.50	5.8	764.40
4	18-1	2.5×2.4×1.8	200	3	1.5	4.9	0.53	19-2	5.00	5.00	2.00	5.8	780.00
5	19-2	5.0×2.0×5.0	200	15	7.5	5.8	0.86	19-5	4.00	6.40	2.70	5.8	1078.27
6	35-2	0.8×1.3×1.0	200	22	11.0	6.0	0.52	19-18	3.20	4.00	3.80	5.8	758.78
7	39-2	2.0×1.4×1.6	200	1	0.5	3.9	0.48	33	4.00	4.00	4.00	5.1	998.40
8	42-1	2.5×2.5×1.0	200	6	3.0	5.0	0.38						
9	45	1.4×2.0×1.0	200	13	6.5	5.1	0.36					-	
10	56	1.2×1.6×0.7	200	51	25.5	6.0	0.55					173	and a

*落石速度は最適防護工位置での速度

大の石を代表落石として評価してい る。図2に区分したエリアと解析に 使用した浮石・転石の位置を示す。

表2は各エリアで算出された速度 と跳躍量の結果である。ただし落石 速度・跳躍量は道路沿いの法面を 落ちる際に増加する部分は考慮せ ず、末端付近の緩傾斜部で発生する 最大値を取っている。

この結果から当斜面における落 石は、どのエリアから落下しても末 端緩斜面付近で概ね6m/s以下の速 度となり、最大跳躍量も50cm程度 であることが予測された。この結果 を用い、解析を実施しない他の石 については、その石が属するエリ アの解析で得られた落石速度に よってエネルギー計算を実施し た。表3に当箇所全域の中でも特 に落石エネルギーが大きい上位6

■図3-落石No.1の落下高・速度関係図

■表3-主要落石の落下エネルギー

落石速度	跳躍高	落石 NO. 1 19-1左 19-2 19-5 19-18		落石径		落石	落石の	落石の
(m/s)	(m)		横幅	高さ	奥行	速度	質量	エネルギー
5.6	0.62	NO.	(m)	(m)	(m)	(m/s)	m (kN)	E(kJ)
4.5	0.46	1	4.50	4.50	5.30	5.6	1674.27	2947
6.1	0.46	19-1左	4.00	3.50	3.50	5.8	764.40	1443
4.9	0.53	19-2	5.00	5.00	2.00	5.8	780.00	1473
5.8	0.86	19-5	4.00	6.40	2.70	5.8	1078.27	2036
6.0	0.52	19-18	3.20	4.00	3.80	5.8	758.78	1433
3.9	0.48	33	4.00	4.00	4.00	5.1	998.40	1457
5.0	0.20						-	

個(115個中)を示す。

また、各エリアからの落石軌跡図 の重複図を図4に示すが、当斜面の 落石は大部分が2本の谷筋に集約 し、特に道路から25~30m付近は 軌跡が最も集約するとともに、落石 速度も低い部分となる。

以上の結果から防護工を設置す る場合には、図3に示す最適防護工 位置が最も効率的と判断できる。

4---対策工の選定

近年、落石防護工は従来防護工 法より大きな落石エネルギーを吸収 できる高エネルギー吸収柵が多数開

■図2-落石エリア区分図 発されている。この利用により予防 工を大幅に減らすことは可能である

黒塗りつぶしが対象石

()内は落石 No

が、防護工は概ね可能吸収エネル ギーに比例して高価となるため、「防 護工+予防工|の組合せで経済性を 評価する必要がある。そこで防護工 の可能吸収エネルギーが小さい順 に図5で示す5案を挙げて各案にお ける経済性を評価した。

その結果、最大級の防護工であ る3.000kJ級の高エネルギー吸収柵 を設置した場合が最も経済的となっ た。これは最大級の落石でも 3,000kJ以下の落石エネルギーのた め、予防工がほとんど必要無くなる ことと、防護工を落石経路が収束す る位置へ限定的に設置することで延 長を短く設定できるためである。設 置完了した柵を写真7に示す。

5---おわりに

3次元落石シミュレーションを実施 することで、施工性・経済性に有利 な対策工を立案できた。また、景観 に対しても当初予測した図6~7の 景観シミュレーションに近い、走行 車両に圧迫感が無く目立たない景観 であることが確認できた。

シミュレーション技術の向上と高

エネルギー吸収柵の登場で、落石 対策は多様化が進んでおり、既往 技術では実現が困難であった景観 性にも今後は配慮が必要と考えら れる。

<参考文献> 1) 『落石対策便覧に関する参考資料 一落石シミュ 平成14年4月

- 2) 『落石防護施設の設置に関する調査研究報告書』 高速道路調査会 昭和49年2月

■写真7ー高エネルギー吸収柵設置完了後状況

■図5-対策工経済性比較グラフ

■図6ーバーチャルシミュレーション始点側道路景観

レーション手法の調査研究資料ー」日本道路協会

3) 「落石調査データによる落石シミュレーションと新 しい対策工法』講習会資料 平成10年9月24日

■図7-バーチャルシミュレーション終点側道路景観

■写真9-設置完了後終点側道路からの景観