Project Brief

he Drainage Project for Environment Improvment in Hanoi 1st Stage

プロジェクト紹介

ハノイ市排水環境改善事業第1期

山寺 彰

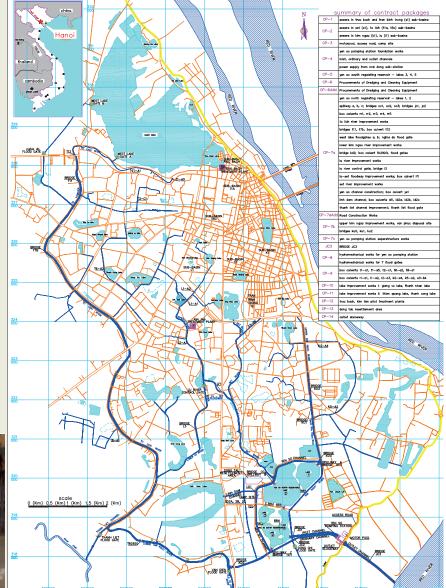
YAMADERA Akira

日本工営株式会社 コンサルタント海外事業本部/都市環境部

1――はじめに

ベトナム社会主義共和国の首都ハ ノイ市はその地勢、都市の発展、歴 史的な経緯から、既存の下水排水 設備は老朽化し流下能力が不足し ています。市街地では写真1に示す ような洪水、浸水被害に毎年のよう に悩まされています。また下水流入 による湖沼等の水質悪化は深刻な 環境問題となっています。一方、ハ ノイ市では将来に向けての都市計画 が随時進行中であり、これら排水環 境の改善は近代的な都市を目指す ハノイ市にとって一日も早く解決しな ければならない問題として位置付け られています。

本事業はハノイ市排水環境改善事 業フェーズ1の第1期工事として、環 境改善並びに都市機能発展の一端 を担うべく、1997年3月に開始され ました。



■写真1-ハノイ市の洪水の様子(2001年8月)

2---事業の内容

本事業の位置を図1に示します。

事業はハノイ市中心部を含むトーリ ック川流域の78km²を対象地域とし

■図1一事業位置

て、排水環境の改善を目的とするも のです。事業は表1に示すように19 ロットに分割され、ロットによって現 地入札方式と国際入札方式を取り 入れながら行いました。これら排水 関連施設の主要建設事業の内容を まとめると下記の通りになります。

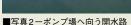
(1) ポンプ場建設

処理能力45m³/sを有するポンプを 設置しました。これに係わる付帯工 事として上下流に総延長約4.7kmの 開水路建設、200mの排出水路建設、 サージタンク建設、建屋建設が含まれ ます。写真2はポンプ場へ向かう開 水路を示します。左側の水路はハノ イ市を流れる主要河川と繋がり、右 側の水路は調整池と結ばれています。 写真3と4はポンプ場の前景と内部の 様子です。ポンプは処理能力3m³/sが 5基と5m³/sが6基で構成されます。

(2) 調整池建設

洪水時に貯水機能を持たせる為 の調整池を5箇所建設しました。総 面積は約180ha、貯水容量は約390 万m³です。その他、調整池を取り 巻く4.3kmの開水路、ラバーゲート、 ました。河床より汚泥を除去し、護岸

橋梁、カルバート、周回道路を建設 しました。


(3) 河川改修工事

市内を流れる主要5河川が対象と なりました。総延長は約32kmです。 河床掘削工事、石張り護岸工事ととも に橋梁、カルバート、管理用道路など の工事を実施しました。河川改修工 事の前後の様子を写真5、6に示しま す。工事は土嚢、木杭、竹杭を用い た仮設工で河川の一部を締切り、ドラ イな状態にした後に人力で実施され

■表1一丁重ロット概要

NO.	主工種	内容	入札方式
CP-1	下水管改修	2.9kmの下水管の新規敷設	現地入札
CP-2	下水管改修	21kmの下水管の新規敷設	現地入札
CP-3	主土木工事のための準備工		現地入札
	•工事用道路建設	幅8.4m、延長800m	
	・工事事務所建設用地の造成	3ha	
	・下水道清掃機器の保管施設の建設	1ha	
CP-4	ポンプ場基礎工事		現地入札
	•杭基礎	920本杭打設	
	•開水路建設	4.7km、流量15~90m³/sec	
	•配電等	22kV、3km	
CP-5	調節池建設工事	77ha、130万m³掘削、	現地入札
		貯水容量150万m ³	
CP-6	下水施設清掃機器調達	機器の調達とO/M指導	国際入札
CP-6 Additional	下水施設清掃機器追加調達	機器の追加調達	国際入札
CP-7a	主土木工事		国際入札
	•調節池	面積95ha、貯水容量240万m3	
	•開水路	4.3km	
	•河川改修	28.4km	
	・ラバーゲート	3箇所	
	·水門(含管理棟)	7箇所	
	・橋梁	11橋	
	・カルバート	6箇所	
CP-7a Additional	トーリック川沿い管理道路工事	全長6.3km	現地入札
CP-7b	河川改修工事	3.4km河川改修、3橋梁建設	現地入札
CP-7c	揚水機場建設工事	揚水機場建屋建設	現地入札
JC3	橋梁建設工事	橋長54m	現地入札
CP-8	揚水機、水門製造、調達、据付工事	水中モータポンプ (3m³/s) ×5基	国際入札
		横軸斜流ポンプ (5m³/s)×6基	
		(含付帯設備)	
		水門7箇所	
CP-9	橋梁カルバート建設工事	10カルバート	現地入札
CP-10	湖沼環境改善工事	4湖	現地入札
CP-11	湖沼環境改善工事	2湖	現地入札
CP-12	下水処理場建設工事	2箇所	国際入札
		処理容量3,700m³/d、2,300m³/d	
CP-13	移転先住居地域造成工事	10ha	現地入札
CP-14	排出水路建設工事	200m、流量45m³/s	現地入札

■写真4ーポンプ室

■写真5、6ートーリック川改修工事前後の様子

■写直7ータンリエット水門

の一部には石張り(河床から洪水時に 想定される高水位まで)と芝張り(高 水位から路肩まで)を設置しました。

(4) 水門建設工事

洪水制御のために主要な河川と 水路に、7筒所の水門を設置しまし た。写真7は建設した中で最も大き い水門です。

(5) カルバート建設工事

市内を流れる水路の中で、特に 洪水時の排水を阻害する既設橋梁 10 箇所を撤去し、カルバートを新設 しました。写真8はまさに街中の土 木を象徴しています。

(6) 湖沼改善工事

市内にある6箇所の湖が対象とな りました。湖床掘削工事、石張り護 岸工事、遊歩道工事等を実施しまし た。水門を設置することで、洪水時 には約62万m³の貯水機能を持たせ ることができます。写真9、10は工事 前後の湖の様子です。護岸に遊歩道 を設けることで市民に憩いの場を提 供することができました。建設後、湖 周辺は公園として整備されています。

(7) 下水施設改善工事

総延長約24kmの新規下水管の敷 設工事と処理容量3,700m³/日、 2.300m³/日を有する2箇所の下水処 理場を建設しました。

3――海外プロジェクトの難しさ

当初、本事業は開始より約4年半 で完了させる予定でしたが、実際に は8年半を要し、2005年8月に完了 しました。遅延には様々な要因が考

えられますが、事業実施の上で特に 悩まされた事項は下記の通りです。

(1) 許認可に関わる問題

特に詳細設計の段階で多大な時 間を要することになりました。それは 相手国政府機関の許認可の仕組み や他機関が定める計画諸元の入手に 関する事柄でした。遺憾ながら本事 業の発注者には決定事項などに対す る権限が皆無に等しかったのです。 従って、その請負者であるコンサル タントが決定権を持つ担当機関と直 接協議する機会は甚だ少なく、作業 の手戻り等を多々発生させ、結果的 に時間を浪費することになりました。

許認可の決定は基本的に国内法 に準じます。本事業の場合はハノイ 市人民委員会が決定権を持っている

■写真8ーカルバート建設工事の様子

■写真9、10ーティエンコン湖改修工事前後の様子

■写真11 一有機質土

ために、特に国際入札のロットを実 施する際には担当機関への説明に 大変な労力を強いられました。また 許認可が他機関に跨る場合には、縦 割り行政の弊害もあり制約のある発 注者の権限ではその調整が極めて のでした。 難しいものでした。このような相手 国政府側の未だ成熟していない組織 の性格や構造等が、事業を迅速に実

(2) 土地収用に関わる問題

契約上の発注者の責務である土 地収用が建設工事着手前のみなら ず着工後も滞り、工事の進捗に多大 な影響が出ました。あるロットでは 土地未収用のために1年余りも工事 が中断しました。また用地問題のた めに設計変更が多々生じ、作業範

施する上で大きな支障となりました。

囲から外されることもありました。こ れらは総じて土地の境界が不明瞭 であったことや、用地賠償金に関し て発注者と地権者との間に大きな意 見の相違があったことに起因するも

この背景にはベトナム国の土地の 境界や土地の権利といった形態が曖 昧であったことが挙げられます。一 方でハノイ市民の生活レベルが日々 向上し、土地価格の高騰が生じてい る現状においては、土地の概念に対 する市民の意識は変化しつつありま す。従来、土地収用は国営企業であ る建設業者が対処していた事実に鑑 みると、残念ながら土地収用に関す る行政側の仕組みが未だ確立され ていないことが示唆されます。

■写真12ー調整池掘削工事中に発生したすべり

真12に示すような斜面の安定や地盤 の沈下などの技術的な問題に度々 遭遇し、工事は難航しました。

4---おわりに

(3) 軟弱地盤に関わる問題

事業の東南部に位置するイェンソ 一地域は軟弱地盤が分布していまし た。特に地表面より5m以深には、 写真11に示すような木片や根などが 介在した有機質土が約5m厚で堆積 していました。有機物含有量は14~ 50%で、自然含水比は30~140%を

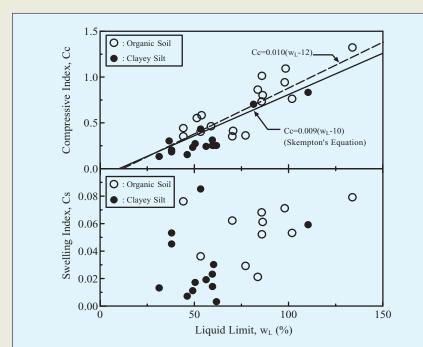
有し、N値は2以下を示しました。

有機質土の圧縮特性を図2に示しま

すが、圧縮性、膨張性ともに高いこ

とが分かります。イェンソー地域に

はポンプ場や調整池など洪水制御


のための重要な構造物が建設され

ましたが、この有機質土のために写

あるハノイ市民が「洪水時に腰ま で浸かっていたが、最近では膝位に までになった | と云うように、この第 1期工事によって排水機能が一部改 善されたことは実感できます。しか し、ハノイ市トーリック川流域の洪 水・浸水防御計画の完成には至って おらず、今後第2期工事の実現を進 めていくことが必要となります。そこ にはポンプ増設工事、水路改修工事、 湖改修工事、下水施設改善工事等 が含まれることでしょう。加えてハノ イ市は南部、西部、北部へとその都 市化範囲を広げており、今後はこれ らの都市開発マスタープランに沿っ た排水事業の展開も必要となりま す。そこではベトナムのお国柄を十 分に認識し、勘案した上での実施が 望まれます。

1) [Geotechnical Properties of Soil Deposits at Yen So Area in Hanoi City, GEOTECHNICS AND GEOENVIRONMENT ENGINEERING Page 62-65. Vietnam-Japan Joint Seminar on Geotechnics and Geoengineering in Hanoi. 2004.

■図2-有機質土の圧縮特性

052 Civil Engineering Consultant