Project Brief

Design & Construction of Irabu Bridge in Okinawa

プロジェクト紹介

î

沖縄伊良部大橋の設計と施工

~32径間連続PC箱桁橋~

岡田俊彦

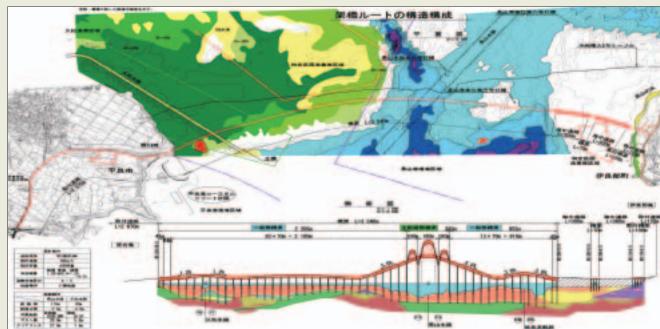
OKADA Toshihiko

1――はじめに

沖縄県は全国で唯一の離島県であり、本島・宮古島・石垣島等49の有人島がある。これまで、沖縄振興計画の中での国土交通省所管補助事業としては、13橋の離島架橋整備

■図1-橋梁位置図

を行ってきている。


昭和49年、伊良部村から当時の沖縄開発庁への架橋要請を皮切りに、平成13年までに平良市~下地島空港までの約14.5kmの県道平良下地島空港線が計画された。伊良部大橋は、その路線の一部として計画された橋梁である。

現在、宮古島から伊良部島間の 交通手段は、フェリー(13便/日)と高 速船(24便/日)のみである。これら は、台風時や冬期波浪時に欠航する ことが多々ある。そのため、生活物 資の輸送や通勤・通学などの日常生 活への影響、収穫農水産物の出荷 の滞りによる経済的損失、救急患者 の搬送の遅れなどのいわゆる"離島 苦"が問題となっている。

本橋の建設により、これらの問題 を解決し、さらに産業基盤の確立、 観光資源の開発、教育・医療・福祉 の向上など島の活性化や振興を図 ることが期待されている。

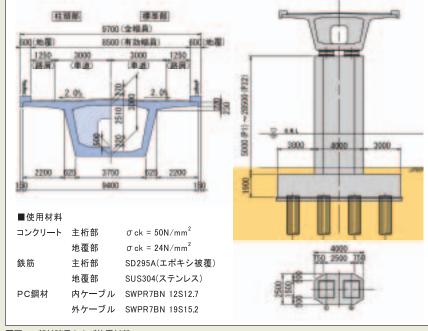
2----橋梁概要

伊良部大橋は、沖縄県宮古島市 の平良字久賀と伊良部字池間添地 先を結ぶ約4.4kmの路線であり、一

■図2-伊良部大橋全体計画図

般部橋梁、主航路部、海中道路部、 取付部橋梁より構成される。

主航路部は長山水路(航路幅 115m)との交差があり、大型船の通 航が行えるように長支間の構造形式 が計画されている。構造形式は、現 在、当初のアーチ形式から見直しが されているところである。


一般橋梁部はプレキャストセグメントによるPC箱桁形式を採用し、宮古島側が支間70mの32径間連続、伊良部島側が支間70mの14径間連続の構造形式である。32径間の連続化はPC箱桁形式では国内最長となる(図1、2)。

3—PC箱桁部の構造検討

橋梁部の大半を占めるPC箱桁部であるが、その内、宮古島側の32径間連続PC箱桁部の設計について紹介する。

(1) 構造寸法の決定

図3に主桁および橋脚の形状と使用材料を示す。主桁は支間と桁高の関係を経済比較し、等断面とした。また、現場製作によるプレキャストセグメント工法を用い、橋梁全体で約1,000個のセグメントを使用する。等断面を採用することで型枠パターンが最小限で済み、セグメントの製作が容易になるという利点もある。

■図3一部材諸元および使用材料

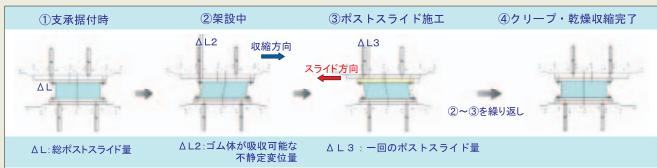
主桁断面の設計では、2.2mの張 出床版に対しFEM解析による検討 を行い、RC構造を採用した。これ により、横締め鋼材が不要になりコ スト縮減を図ることができた。

橋脚の高さは、P1橋脚の5.0mからP32橋脚の28.5mと高低差が大きい。本橋では、支承構造に免震支承を採用し、橋脚に作用する地震時の主桁慣性力を分散させることで、スレンダーな橋脚形状とすることが可能となった。

(2) 塩害への対策

沖縄県は塩害の影響が激しい地

域であり、鉄筋や主ケーブルへの防 錆対策が重要となる。本橋では、道 路橋示方書の規定に則り、主桁コン クリートのかぶりを70mm確保する 他、コンクリート内の鉄筋にエポキシ 被覆鉄筋を使用し、外ケーブルはエ ポキシ被覆鋼材をシースに通してグ ラウトすることとした。また、橋面工 の施工まで海上の外気に曝される 地覆鉄筋にはステンレスを用いるな ど、徹底した塩害対策を行った(写 真1、2)。


(3) 多径間連続化の利点・欠点

宮古島側PC箱桁部は32径間連続

■写真1、2ーエポキシ被覆鉄筋の使用

046 | Civil Engineering Consultant | 047

■図4ーポストスライド要領図

橋に免震支承を併用した構造であ る。多径間連続構造のメリットとして は次のようなものが挙げられる。

- a) 下部構造に与える地震力の軽減
- b) 伸縮装置の減少による費用縮減
- c) 走行時の快適性向上と交通振動、 騒音の低減

よって、維持管理費の低減を図る ことが出来る。

その反面、連続径間数が増えるに したがって、温度変化による水平ひ ずみと軸力の増加、およびクリー プ・乾燥収縮による桁の伸縮量の増 大が問題となる1)。

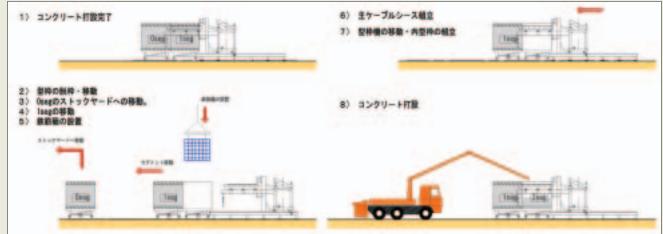
伊良部大橋の架設は、宮古島側 から順次行なわれる。よって、各径 間の施工ステップ毎に、セグメント架 設時材令、温度変化、クリープ・乾 燥収縮を考慮した、各支承の水平 ひずみ量を算出し、後述するポスト スライド工の計画を行い対処してい る。計算結果より、P15橋脚付近を 不動点とし、A1橋台の桁端部では

最終的に420mmもの水平ひずみが 生じることが分かった。

(4) ポストスライドエの計画

図4に模式図を示す。通常、ポス トスライドは橋脚側のベースプレート をスライドさせるが、本橋梁の調整 量では、ベースプレート寸法が大き くなり、橋脚幅を厚くしなければな らなかった。

この問題に対処するため、①ひず み量が大きい橋脚は複数回に分け てポストスライド工を実施、②主桁側 のソールプレート下面と上沓上面を スライド面としてポストスライド調整 工を行う方法を採用した。上沓側 で行う方法は過去に試験施工を行 っており、機能的な問題がないこと を確認している。また、この方法を 採用したことによるポストスライド工 費の増加はなく、橋脚幅も大きくす る必要がないため、最終的にコスト 縮減につながった。


4——施工計画

(1) セグメント製作

セグメントは、宮古島側に設けた製 作ヤードにおいて、ショートラインマ ッチキャスト方式で製作される。こ の方式は、直前に製作されたセグメ ントを端型枠として利用しながら、順 次打設する方法であり、一方の端型 枠の設置が不要となる(図5、写真3)。 製作されたセグメントは、クレーンで 隣接するストックヤードに仮置きされ る(写真4)。

(2) セグメント架設

仮置きされたセグメントは、特殊ト レーラーにて架設地点まで運搬され る。セグメントの架設は、宮古島側 (A1橋台側)より図6に示すような、1 機の架設桁を用いてバランスドカン チレバー架設工法にて行う。架設 桁は張出し橋脚を中心に隣り合う橋 脚に、3本の脚を固定して安定させ る。セグメントを積載したトレーラー は既に架設が完了した主桁上を走

■図5-セグメント製作要領図

■写真3ーセグメント製作台

■写真4ーセグメント置き場

■図6一張り出し架設要領

行し、架設地点まで運搬される。架 設桁には2基のトローリー(セグメン ト吊り機)が装備されており、トレー ラーからセグメントを吊り上げ、張出 し位置まで移動して据え付け・接合 を行う。張出しが完了すると、トロー リーにベントを取り付け、次橋脚へ と架設桁を送り出す。

また、柱頭部は下部工施工の桟 橋・桟台を利用し、ブラケット支保

工による場所打ち施工とした。

5――おわりに

現在、伊良部大橋は2012年度の 完成に向けて工事が進められてい る。ヤードにて着々とセグメントの製 作が行われているが、同時に海上 では橋脚の施工が行われている(写 真5、6)。そして間もなくP1橋脚か らの張出し施工が開始される予定

である。

伊良部大橋のコンセプトは、「青海 原と夕陽に映えるいらぶの道 | であ る。住民の利便性の向上は勿論の こと、海の上を這うようなシルエット は、観光スポットとしても多くの人が 訪れるに違いない。

<参考資料>

- 1) 大住、運上: 超多径間連続免震橋の地震時応答特 性と耐震設計法、土木技術資料、40-2, 1998
- 2) 社団法人プレストレストコンクリート技術協会:外ケ ーブル構造・プレキャストセグメント工法設計施工 規準、2005.07

■写真5、6一架橋地点の工事状況(7月時点)

■写真7一沖縄で取れる海草、海ぶどうを使った「海ぶど う丼とソーキそば」

048 | Civil Engineering Consultant Civil Engineering Consultant | 049